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ABSTRACT
Background:  Diffuse large B-cell lymphoma (DLBCL), the most prevalent type of non-Hodgkin’s 
lymphoma, exhibits significant correlations with efferocytosis-related molecules (ERMs) concerning 
invasion, metastasis, and clinical outcomes. This study aims to establish an efferocytosis-related 
gene signature specifically linked to DLBCL.
Methods:  Key module genes linked to DLBCL were identified via weighted gene co-expression 
network analysis (WGCNA) in GSE32018. Univariate Cox analysis of GSE31312 revealed ERMs 
associated with DLBCL survival. Differential expression analysis identified differentially expressed 
genes (DEGs) between DLBCL subtypes and normal samples. Venn diagram analysis identified 
common DEGs and key module genes. A DLBCL gene signature was built by using univariate Cox 
and least absolute shrinkage and selection operator (LASSO) analysis. Gene functional enrichment, 
immune microenvironment, and immunotherapy analyses compared two risk subgroups. 
Prognostic gene expression was validated at the single-cell level.
Results:  In the GSE32018 dataset, 1760 key module genes related to DLBCL were identified. 
Using GSE31312, 14 ERMs associated with DLBCL prognosis were determined.Then, an ERMs-related 
prognostic signature, including small nuclear ribonucleoprotein polypeptides B (SNRPB) and 
centrosomal protein 290 (CEP290), was established. Independent prognostic analysis showed that 
the RiskScore derived from this signature was a prognostic factor. Significant immune 
microenvironment differences were observed between two risk subgroups. Additionally, 
chemotherapeutic drug sensitivity results indicated the signature could predict therapeutic 
response. Eventually, expression of SNRPB and CEP290 was confirmed in B cells.
Conclusion:  The prognostic signature comprised of SNRPB and CEP290 based on ERMs-DEGs was 
established, providing a theoretical basis and reference value for DLBCL research.

1.  Introduction

Lymphomas are broadly classified into non-Hodgkin 
and Hodgkin categories [1]. Among the non-Hodgkin 
types, Diffuse large B cell lymphoma (DLBCL) stands 
out as the predominant subtype, representing about 
one-third of global lymphoma diagnoses [2–4]. 
Molecular analysis has further segmented DLBCL 
into three subcategories: central B cell-like (GCB-like), 

activated B cell-like (ABC-like), and a minor fraction 
that remains unclassified [5]. While the majority of 
DLBCL patients show positive responses to the stan-
dard R-CHOP regimen-a combination of rituximab, 
cyclophosphamide, doxorubicin, vincristine, and  
prednisolone-sustainable remissions are rare. 
Consequently, the overall survival (OS) outlook for 
DLBCL patients remains unsatisfactory [5,6]. This 
underscores the urgent need for innovative 

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

CONTACT Chao Lin  linch26@mail2.sysu.edu.cn  Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The 
Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China; Ying Wang  wangying3471@163.com  Department of Haematology, The Seventh 
Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China; Wen-Lin Xie  xiewlin@mail.sysu.edu.cn  Pathological Diagnostic Center, The Seventh 
Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
*These authors contributed equally to this work.

 Supplemental data for this article can be accessed online at https://doi.org/10.1080/07853890.2024.2425065.

https://doi.org/10.1080/07853890.2024.2425065

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

ARTICLE HISTORY
Received 27 March 2024
Revised 28 June 2024
Accepted 17 October 2024

KEYWORDS
Diffuse large B cell 
lymphoma; efferocytosis; 
prognostic signature; risk 
subgroups; tumour 
immune 
microenvironment

mailto:linch26@mail2.sysu.edu.cn
mailto:wangying3471@163.com
mailto:xiewlin@mail.sysu.edu.cn
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080/07853890.2024.2425065&domain=pdf&date_stamp=2024-11-6


2 J. TANG ET AL.

molecular targets in DLBCL treatment and the 
imperative to develop novel biomarkers for improved 
early detection and tailored treatment.

In the tumour microenvironment, a variety of 
immune cells, including macrophages, dendritic cells, 
regulatory T cells, and both CD8+ and CD4+ T cells, 
engage in the process of efferocytosis to eliminate 
apoptotic tumour cells [7]. The efferocytosis mecha-
nism unfolds through four sequential stages: the 
emission of ‘call me’ signals by apoptotic cells, the rec-
ognition of these dying cells by phagocytes, their 
direct interaction, and the eventual release of 
anti-inflammatory mediators [8]. While earlier studies 
underscored the potential of targeting molecules and 
pathways associated with efferocytosis in cancer ther-
apy [9,10], other research revealed their significant 
relationship with malignancy invasion, metastasis, and 
clinical progression, emphasizing their crucial role in 
the outcome of cancer treatments [7]. Yet, insights 
into the prognostic significance and therapeutic 
potential of efferocytosis-related molecules (ERMs) 
specifically in DLBCL remain to be fully explored.

In our research, we pinpointed genes related to 
efferocytosis within DLBCL. By examining their prog-
nostic significance, we explored potential biological 
pathways they might be involved in. This offers an 
analytical foundation for assessing the prognosis of 
DLBCL patients while shedding light on molecular 
shifts that occur throughout the disease’s progression.

2.  Materials and methods

2.1.  Data source

Multiple gene expression profile datasets of DLBCL 
samples were collected from Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/). GSE32018 datasets included 22 DLBCL and 7 
normal samples, while GSE31312 datasets contained 
470 DLBCL samples with survival information. 
Additionally, single-cell RNA sequencing (scRNA-seq) 
data from 4 DLBCL and 4 normal tissues were 
retrieved from GSE182434. The prognostic model val-
idation dataset was downloaded from The Cancer 
Genome Atlas (TCGA) database, which included 48 
DLBCL samples with survival information. A total of 
72 efferocytosis-related molecules (ERMs) were 
derived from reported literature [11,12].

2.2.  Weighted gene co-expression network 
analysis (WGCNA)

The DLBCL was considered as clinical trait for WGCNA 
of GSE32018 datasets via ‘WGCNA’ (version 1.70-3) 

package [13]. Firstly, we clustered all samples and 
removed outliers to ensure the accuracy of the analy-
sis. Then, a trait heat map and sample dendrogram 
were constructed, and the soft threshold was deter-
mined. The similarity between genes was calculated 
according to the adjacency, and a phylogenetic tree of 
the genes was obtained. The modules were divided via 
dynamic tree cutting algorithm with a minimum mod-
ule size of 100. We then classified the genes into dif-
ferent modules by dynamic tree cutting algorithm. The 
module dissimilarity threshold (MEDissThres) was set 
to 0.2 to merge the similar modules. Finally, the mod-
ules with the highest correlation to DLBCL were used 
as key modules for subsequent analysis.

2.3.  Consensus clustering analysis and assessment

In this study, GSE31312 was applied as the training set. 
Univariate COX analysis was utilized to screen ERMs 
associated with DLBCL patient survival. With the assis-
tance of the ‘ConsensusClusterPlus’ package (version 
1.62.0) [14], 470 DLBCL samples were clustered based 
on the expression of ERMs linked to patient survival. By 
excluding samples without survival data, we carried 
out a Kaplan-Meier (K-M) survival analysis based on dif-
ferent clustering subtypes. To examine the heterogene-
ity among different subtypes, a principal component 
analysis (PCA) was implemented using ‘stats’ package 
(version 0.12.1). Meanwhile, ERMs linked to DLBCL 
patient survival were analyzed between different sub-
types using ‘ggpubr’ package (version 0.4.0). With refer-
ence to the LM22 gene set, the CIBERSORT algorithm 
(version 1.03) was applied to calculate the proportion 
of 22 immune cells in all tumour samples. The expres-
sion levels of 23 immune checkpoints [15] were com-
pared across different subtypes using the rank-sum test.

2.4.  Differential analysis

In GSE31312, the ‘limma’ package (version 1.36.0) [16] 
was executed to obtain the differentially expressed 
genes1 (DEGs1) between different clustering subtypes, 
using adj.p < 0.05 and |log2FC| > 0.5 as the threshold. 
Gene Ontology (GO) enrichment and Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) enrich-
ment analyses of DEGs1 was conducted via ‘clusterPro-
filer’ package (version 4.4.4) [17], adopting adj.p < 0.05 
as the criteria. The same method was utilized to obtain 
DEGs2 between DLBCL and normal groups in GSE32018 
datasets. Volcano plot and heat map were applied to 
illustrate DEGs. The intersection of DEGs1, DEGs2, and 
key module genes associated with DLBCL were deter-
mined using a Venn diagram.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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2.5.  Risk score-based subgroup analysis of DLBCL 
patients

Univariate cox and least absolute selection and 
shrinkage operator (LASSO) regression analyses were 
yielded to screen prognostic ERMs in GSE31312 data-
sets. The risk score model calculating formula was: 
risk score coefficient genei *expr genei

n
=

=∑ ( ( ) ( ))
i 1

. Based 
on median value of risk score from each sample, 
DLBCL patients with survival information were cate-
gorized into two risk subgroups (low-risk and 
high-risk). The prognostic reliability of the model was 
assessed by K-M curves and receiver operating char-
acteristic (ROC) curves for 1-, 2-, and 3-year intervals. 
Simultaneously, TCGA-DLBCL datasets was regarded 
as an external verification set for the risk model.

2.6.  Clinical nomogram model

For the construction of the clinical nomogram model, 
the risk score, sub-type (GCB), age, gender, Ann Arbor 
stage (AAS), ECOG performance status, International 
Prognostic Index (IPI) score, presence of bulky disease 
(Bulky code), and lactate dehydrogenase (LDH) levels 
were enrolled into univariate and multivariate Cox 
regression analyses to authenticate independent 
prognostic predictors. A nomogram incorporating 
independent factors was developed to predict 1-, 2-, 
and 3-year survival probability of DLBCL patients. The 
predictive accuracy of the nomogram was evaluated 
using calibration curves and ROC curves.

2.7.  Gene set enrichment analysis (GSEA)

The ‘limma’ package [18] was utilized to calculate the 
log2FC between two risk subgroups. Then, based on 
GO (biological process) and KEGG gene set, GSEA 
(adj.p < 0.05) was performed for find related pathways 
between two risk groups.

2.8.  Immune feature estimation and therapy 
analysis

Leverage LM22 gene set, the CIBERSORT algorithm 
was yielded to calculate the expression of 22 immune 
cells in DLBCL microenvironment. Subsequently, cor-
relation coefficients between differential immune cells 
and prognostic genes associated with ERMs were ana-
lyzed. The ‘estimate’ package was applied to obtain 
and compare the Immune score, Stromal score and 
ESTIMATE score of tumour tissues. Meanwhile, in order 
to study the immune status of DLBCL, differences in 
11 immune checkpoint genes between the high- and 

low-risk groups were compared [19]. The Spearman 
method was used to analyze the correlations between 
risk score and immune checkpoint genes. Additionally, 
the TIDE score, Dysfunction score, Exclusion score, 
CD8, and CD274 were compared between the high- 
and low-risk groups. The correlation between risk score 
and the inhibitory concentration (IC50) of 138 drugs 
was analyzed using ‘pRRophetic’ package (version 0.5).

2.9.  Construction of competing endogenous RNA 
(ceRNA) network

The miRNAs associated with prognostic genes were pre-
dicted through miRWalk database (http://mirwalk.umm.
uni-heidelberg.de/), with screening criteria of energy < 
−15 and bindingp = 1. The lncRNAs associated with 
miRNAs were predicted using Starbase database (https://
starbase.sysu.edu.cn/index.php), with screening criteria 
of clipExpNum > 1 and geneType = lincRNA. Moreover, 
the ‘lncRNA-mRNA-miRNA’ network was constructed via 
Cytoscape software (version 3.8.2) [20].

2.10.  ScRNA-seq analysis

Firstly, scRNA-seq data was filtered using R package 
‘Seurat’ (version 5.0.1) [21] in GSE182434. The 
‘PercentageFeatureSet’ function was used to calculate 
the mitochondrial genes, and cells with fewer than 
10% mitochondrial genes were retained. Subsequently, 
the Find Variable Features function in the R package 
‘Seurat’ was used to screen out the top 2000 highly 
variable genes for downstream analysis. Principal com-
ponent analysis (PCA) was then conducted to reduce 
dimensionality. Next, FindNeighbors and FindClusters 
functions were used for unsupervised clustering analy-
sis of cells. We then used Uniform Manifold 
Approximation and Projection (UMAP) to display the 
results of the clustering. The marker genes of each cell 
cluster were compared with the marker genes of each 
cell type in the CellMarker database to determine the 
type of cell subgroup type. The R package ‘SingleR’ 
(version 2.0.0) was deployed to helping annotate cell 
types. Following this, the expression of prognostic 
genes in different cell types was analyzed by plotting 
UMAP maps and violin plots. Monocle3 (version 2.14.0) 
[22] was used for cell trajectory analysis and 
‘CellPhoneDB’ was used for cell communication analysis.

2.11.  Immunohistochemistry

In this study, sample tissues were obtained from 
tumour tissues of patients with diffuse large B cell 

http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://starbase.sysu.edu.cn/index.php
https://starbase.sysu.edu.cn/index.php
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lymphoma (DLBCL), and normal lymph nodes that 
were not invaded by the tumour. Approval from the 
hospital ethics committee and informed consent from 
the patients were obtained. During the procedure, 
the resected tumour tissue and adjacent normal 
lymph nodes were initially assessed by the patholo-
gist to ensure the representativeness and quality of 
the samples. The samples were then rapidly sepa-
rated and labelled separately to avoid confusion. To 
maximise the retention of biological information in 
the tissues, samples were placed in collection tubes 
containing RNA stabiliser immediately after collection 
and rapidly frozen for processing. They were first 
snap-frozen in liquid nitrogen and then transferred to 
a −80 °C ultra-low temperature refrigerator for 
long-term storage. The entire sample collection pro-
cess lasted from May 2023 to April 2024, during 
which time the steps described above were rigor-
ously carried out to ensure sample consistency and 
study reproducibility. Tumour paraffin sections were 
immunostained with antibodies against CEP290 (poly-
clonal, 1:100, Proteintech) and SNRPB (polyclona, 
1:200; Proteintech) using standard protocols. Ready-to-
use two-step abiotin immunohistochemical assay kit 
(PV9000; Zhongshan Golden Bridge) was used to 
detect CEP290 and SNRPB in tissues. Clinical informa-
tion of patients and healthy control in Supplementary 
Table 1. This study was approved by Ethics Committee 
of Seventh Affiliated Hospital, Sun Yat-Sen 
University(KY-2024-063-01).

2.12.  Statistical analysis

All analyses were executed in R software (version 
4.2.2). K-M the log-rank test were used to evaluate the 
associations with survival time. P value < 0.05 was 
considered statistically significant.

3.  Results

3.1.  Identification of key module genes related to 
DLBCL in GSE32018

To seek out key modules related to DLBCL, we con-
ducted the WGCNA. The results of sample clustering 
indicated that there were no outlier samples 
(Supplementary Figure 1). The optimal soft threshold 
was determined to be 5. When the mean connectivity 
tended to zero, the ordinate of the scale-free fit index 
approached the threshold value of 0.85, indicated by 
the red line (Figure 1A). A total of 11 modules were 
identified using the dynamic tree cut algorithm and 
by merging modules (Figure 1B). The MEred (Cor = 

0.83) and MEpurple (Cor = −0.75) modules were mark-
edly correlated with patient/control (Figure 1C), lead-
ing to the identification of 1,760 key module genes 
associated with DLBCL for subsequent analyses 
(Figure 1D).

3.2.  The ERMs associated with prognosis in DLBCL

Regarding the ERMs associated with the prognosis 
in DLBCL, 14 ERMs were identified through univari-
ate Cox regression analysis as being related to 
DLBCL prognosis (Figure 2A). We divided 470 DLBCL 
patients from the GSE31312 dataset into two sub-
types: Cluster 1 (312 samples) and Cluster 2 (158 
samples), based on the expression of ERMs linked 
to DLBCL prognosis (Figure 2B-C). K-M analysis 
revealed a significant survival difference between 
the two subtypes, with Cluster 1 exhibiting poorer 
OS (Figure 2D). PCA also demonstrated heterogene-
ity between the two subtypes (Figure 2E). Notably, 
the expression of 11 ERMs associated with DLBCL 
prognosis differed significantly between the two 
subgroups (Figure 2F). There were significant differ-
ences in the abundances of 8 immune cell types, 
including memory B cells, CD8 T cells, CD4 naive T 
cells, activated CD4 memory T cells, resting NK cells, 
M1 Macrophages, M2 Macrophages, and neutrophils 
(Supplementary Figure 2A). Additionally, 14 immune 
checkpoint genes, encompassing CD244, CD96, 
CSF1R, CTLA4, HAVCR2, IDO1, KDR, KIR2DL1, 
KIR2DL3, LAG3, PDCD1LG2, TGFB1, TGFBR1, and 
TIGIT, were significantly differentially expressed 
between the two subtypes (Supplementary 
Figure 2B).

3.3.  Screening of candidate genes associated with 
ERMs in DLBCL

Totally 255 DEGs1 were identified in GSE31312 data-
base, comprising 101 significantly up-regulated and 
154 significantly down-regulated genes in cluster 1 
(Figure 3A-B). To understand the biological significance 
of DEGs1, we performed functional enrichment analy-
sis. The GO analysis revealed that these DEGs were 
mainly involved in the ‘regulation of peroxisome prolif-
erator activated receptor (PPAR) signalling pathway’ 
and ‘dystrophin-associated glycoprotein complex’ 
(Figure 3C). The PPAR signalling pathway plays a cru-
cial role in lipid metabolism and energy homeostasis, 
processes known to be dysregulated in cancer, includ-
ing DLBCL [23]. The dystrophin-associated glycoprotein 
complex is significant in maintaining cellular integrity, 
and its disruption may contribute to the oncogenic 

https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
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processes in DLBCL [24]. Moreover, KEGG pathway 
analysis suggested that DEGs1 were mainly enriched in 
‘Aldosterone synthesis and secretion’ as well as ‘Mineral 
absorption’ (Figure 3D). Aldosterone synthesis and 
secretion are linked to cellular growth and immune 
response, which are critical aspects of DLBCL patho-
physiology [25]. And the mineral absorption pathway 
is crucial for maintaining cellular ionic balance and 

metabolic functions, when dysregulated, can contrib-
ute to cancer development and progression [26]. In 
summary, these DEGs1 are potentially critical in under-
standing the microenvironmental interactions and 
extracellular signalling pathways that contribute to 
DLBCL pathogenesis. Similarly, from the GSE32018 
database, we identified 2,994 DEGs2, with 1,803 signifi-
cantly up-regulated and 1,191 significantly 

Figure 1. I dentification of key module genes for diffuse large B-cell lymphoma (DLBCL) by weighted gene co-expression network anal-
ysis (WGCNA). (A) Selection of the optimal soft-thresholding (power). (B) Hierarchical clustering of genes and module identification. (C) 
Heatmap of the relationships between gene modules and differential immune cells. (D) Scatter plots of correlation between module 
genes and clinical traits (DLBCL and normal).
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down-regulated genes in DLBCL samples (Figure 3E-F). 

Hence, 9 candidate genes associated with ERMs in 

DLBCL were obtained by overlapping DEGs1, DEGs2 

and key module genes related to DLBCL (Figure 3G).

3.4.  Prognostic signature based on ERMs 
associated with survival

Univariate regression analysis identified 2 significant 
genes (HR ≠ 1 & p < 0.05) in the GSE31312 dataset, 

Figure 2. I dentification of prognosis-related genes by consensus clustering analysis. (A) The efferocytosis-related molecules (ERMs) 
related to prognosis were acquired by univariate Cox regression analysis. (B) Consensus clustering CDF for k = 2 to k = 6 (left). 
The corresponding relative change in area under the cumulative distribution function (CDF) curves when cluster number changed 
from k to k + 1 (right). The range of k changed from 2 to 6 and the optimal k = 2. (C) Consensus clustering matrix of DLBCL 
samples for k = 2. (D) The Kaplan-Meier (KM) survival curves of cluster 1 and cluster 2. (E) The principal component analysis (PCA) 
analysis of two clusters. (F) The expression of ERMs in two clusters. ns, not significant; *p < 0.05; **p < 0.01; ****p < 0.0001.
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Figure 3. I dentification of candidate genes for DLBCL. (A) The volcano map of differentially expressed genes (DEGs) between 
cluster 1 and cluster 2 in the GSE31312 database. (B) The heat map of top50 DEGs in the GSE31312 database. (C, D) The Gene 
ontology (GO) terms (C) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways (D) enriched in DEGs. (E) The volcano 
map of DEGs between DLBCL and normal samples in the GSE32018 dataset. (F) The heat map of top50 DEGs in the GSE32018 
dataset. (G) The Venn diagram of 9 candidate genes.
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namely SNRPB and CEP290 (Figure 4A). To further dig 
out the prognostic genes, LASSO regression analysis 
was conducted on 2 significant genes to unearth the 
optima (Figure 4B-C). Ultimately, SNRPB and CEP290 
were selected as prognostic genes for building a 
ERMs-related prognostic signature with DLBCL. Then, 
DLBCL patients were divided into two risk groups 
(Figure 4D). High expression of 2 prognostic genes were 
centred on the high-risk group. Notably, we found sig-
nificant survival differences between two risk groups 
and patients in the high-risk DLBCL group had poor 
survival rates (Figure 4E). To further evaluate the reliabil-
ity of the model, the AUC value of the model in fore-
casting 1-, 2-, 3-year survival of LUAD patients was 0.60, 
0.65, and 0.63 in GSE31312 datasets, indicating the risk 
model could forecast the survival status of DLBCL 
patients (Figure 4F). Next, we further validated the risk 
model in the external validation datasets (TCGA-DLBCL). 
Consistent with the results detected based on GSE31312 
datasets (Figure 4G), as anticipated, patients with 
high-risk DLBCL exhibited poorer OS (Figure 4H). AUC 
values of the 1-, 2- and 3-year were basically greater 
than 0.60 (Figure 4I). These results showed that novel 
ERMs-related gene signature exhibited satisfactory pre-
dicting performance in the validation cohort.

3.5.  Independent prognostic analysis for DLBCL 
patients

The results of Cox analyses suggested that RiskScore was prog-
nostic independent factors (p < 0.05) (Figure 5A-B). The nomo-
gram containing 1-, 2-, 3-year survival rates was generated 
(Figure 5C). The calibration and ROC curves proved that the 
feasibility of the nomogram was effective (Figure 5D-E).

3.6.  Differential gene enrichment analysis in risk 
subgroups

We performed GSEA analysis in risk subgroups. GO 
results demonstrated that ‘ribonucleoprotein complex 
biogenesis’ was enriched in high-risk groups and ‘ade-
nylate cyclase-modulating G protein-coupled receptor 
signalling’ was enriched in low-risk groups (Figure 6A-B). 
KEGG results demonstrated that ‘Cell cycle’ was enriched 
in high-risk groups and ‘Cytokine-cytokine receptor 
interaction’ was enriched in low-risk groups (Figure 6C-D).

3.7.  Immune infiltration analysis

To explore the immune microenvironment of DLBCL, 
we analyzed the expression of 22 immune cells 
between two sample groups in GSE31312 
(Supplementary Figure 3A). There were 12 immune cell 

abundances that differed significantly in two 
risk-subgroups, including naive B cells, memory B cells, 
CD8 T cells, naive CD4 T cells, activated memory CD4 
T cells, regulatory T cells, gamma delta T cells, resting 
NK cells, Monocytes, Macrophages M1, Macrophages 
M2, and Neutrophils (Supplementary Figure 3B). The 
correlation analysis revealed that SNRPB was positively 
associated with naive B cells. CEP290 was positively 
associated with gamma delta T cells (Figure 7A). We 
found that the stromal score was significantly higher 
in the low-risk group, while the immune score was sig-
nificantly higher in the high-risk group (Figure 7B). 
There were 3 significantly differentially expressed 
immune checkpoint genes, including CD276, CD80, 
and TNFSF4 (Figure 7C). We also found that there were 
certain positive correlations between the risk score 
and the 9 immune checkpoints (PVR, HAVCR2, CD86, 
CD80, CD47, CD276, CD244, CD226 and CD160) 
(Supplementary Figure 3C). It was found that markers 
of immune exclusion, immune dysfunction, and CD274 
were significant in both high- and low-risk group 
(Figure 7D). In order to discover potential drugs, we 
compared IC50 of 138 drugs between all samples. There 
was a significant correlation between the risk score 
and the 27 drugs (p < 0.05) (Figure 7E). Significant dif-
ferences in sensitivity to 27 drugs were observed 
between high- and low-risk groups (Figure 7F).

3.8.  The ceRNA network analysis

The relevance of this ceRNA network analysis lies in its 
potential to elucidate the post-transcriptional regula-
tory interactions that affect SNRPB and CEP290, both 
of which are critical to the pathology of the disease 
under investigation. Therefore, to explore the regula-
tory mechanisms of SNRPB and CEP290, we con-
structed a ‘lncRNA-mRNA-miRNA’ network consisting of 
44 lncRNAs, 7 miRNAs, and 2 mRNAs. This network 
comprised 53 nodes and 69 edges, illustrating the 
complex interactions between these RNA molecules. 
Notably, SNRPB was associated with hsa-miR-513a-5p, 
while hsa-miR-629-5p influenced the expression of 
CEP290 (Figure 8). This insight into the RNA-based reg-
ulatory landscape provides a foundation for further 
functional studies and highlights potential avenues for 
targeted therapeutic intervention.

3.9.  Expression analysis of prognostic genes in 
different cells

In order to further analyze the expression and regula-
tion of prognostic genes at the single-cell level, we 

https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
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applied the GSE182434 datasets for analysis after cell 
filtration (Supplementary Figure 4A). In total, 2000 
highly variable genes were identified (Supplementary 
Figure 4B). PCA plots revealed that P-values of 30 PCs 
were extremely significant (Supplementary Figure 4C). 
Consequently, we selected these 30 PCs for 

subsequent analyses, and the cells were classified into 
11 clusters (Figure 9A) and were annotated as NK cells, 
Monocyte/Macrophage, B cells, and T cells (Figure 
9B-C). Supplementary Figure 4D showed the distribu-
tion of 4 cell subsets in both normal and DLBCL 
groups. UMAP and violin diagrams revealed that the 

Figure 4. E stablishment of prognostic signature for DLBCL. (A) Two prognostic genes obtained by univariate Cox regression anal-
ysis. (B, C) The plot of gene coefficients (B) and error plots for 10-fold cross-validation (C) in least absolute shrinkage and selection 
operator (LASSO) analysis. (D) The risk curve, survival state distribution, and the expression of prognostic genes. (E) The KM sur-
vival curves of high- and low-risk groups. (F) The receiver operating characteristic (ROC) curves of the prognostic signature with 
1, 2, 3 years as survival time points. AUC, area under the curve. (G) The risk curve, survival state distribution, and the expression 
of prognostic genes in the TCGA-DLBCL dataset (validation set). (H) The KM survival curves of two risk groups in the TCGA-DLBCL 
dataset. (I) The ROC curves of prognostic signature in the TCGA-DLBCL dataset.

https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
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prognostic genes were expressed in B cells, and the 
expression levels of 2 prognostic genes in B cells from 
the DLBCL samples were lower than those in B cells 
from the normal samples (Figure 9D-E). Cell communi-
cation analysis identified strong interactions between 
key cells, with the highest number of receptor-ligand 
pairs occurring between monocytes/macrophages and 
NK cells (Supplementary Figure 5A). This finding was 
further corroborated by receptor-ligand interaction 
analysis (Supplementary Figure 5B). Using Monocle 2 
for pseudotime analysis, we discovered that B cells 
diverged into 2 branches, possibly representing trans-
formation trajectories from normal to malignant cells, 

and it appeared that B cell differentiation in the dis-
ease group occurred earlier (Figure 9F-H). The dynamic 
expression profiles of 2 prognostic genes across 5 
states were depicted in Figure 9I. We found that the 
expression of SNRPB affected the state of B cells.

3.10.  Analysis of prognostic gene expression at 
protein level

Immunohistochemical results were summarized in 
Figure 10A-B. We observed that CEP290 and SNRPB 
proteins were more highly expressed in the tumour 
group compared to the normal group.

Figure 5. I ndependent prognostic analysis and the creation of nomogram. (A, B) The results of univariate (A) and multivariate Cox 
(B) Cox independent prognostic analysis. (C) The nomogram constructed based on two prognostic genes. (D) The calibration curve 
of the nomogram. (E) The ROC curves of the nomogram with 1, 2, 3 years as survival time points.

https://doi.org/10.1080/07853890.2024.2425065
https://doi.org/10.1080/07853890.2024.2425065
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4.  Discussion

From our understanding, advancements in DLBCL treat-
ments have particularly been pronounced for patients 
undergoing subsequent therapeutic lines. Although 

emerging therapeutic avenues address relapsed/refrac-

tory cases of DLBCL, challenges persist for patients in 

advanced therapy stages [27]. Efferocytosis, crucial for 

tissue equilibrium, involves the non-inflammatory 

Figure 6.  Gene set enrichment analysis (GSEA) enrichment analysis. (A, B) The top10 GO pathways enriched in low-risk (A) and 
high-risk (B) groups. (C, D) The top10 KEGG pathways enriched in low-risk (C) and high-risk (D) groups.
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clearance of apoptotic cells, curbing undesired inflam-
matory reactions and avert autoimmune disturbances 
[28]. Amir Tajbakhsh and colleagues identified soluble 
receptors/ligands tied to efferocytosis, revealing both 
their clinical relevance and potential as diagnostic and 
prognostic tools [29]. Yet, insights into ERMs’ prognostic 
and therapeutic potential in DLBCL remain scarce. 
Motivated by this, we crafted a gene signature focus-
ing on efferocytosis in relation to DLBCL.

Produced by the SNRPB gene, Small nuclear ribonu-
cleoprotein polypeptides B and B1 are common 
nuclear components of snRNPs, specifically U1, U2, U4/
U6, and U5 [30]. These particles contribute to pre-mRNA 
splicing, suggesting the protein encoded by SNRPB 
might influence snRNP structure or the splicing pro-
cess. In various tumours, there’s a link between SNRPB, 
immune cell infiltration, and immunomodulation gene 
expression [30]. Notably, local studies highlighted 

Figure 7. I mmune infiltration analysis. (A) The relevance of prognostic genes to differential immune cells. *p < 0.05; ** p < 0.01. (B) The 
discrepancies of stromal score, immune score, and ESTIMATE score in high- and low-risk groups. ns, not significant; ** p < 0.01. (C) The 
expression of immune checkpoint genes in two risk groups. ns, not significant; *p < 0.05; ** p < 0.01; ****p < 0.0001. (D) Comparison of 
CD274, CD8, Dysfunction, and Exclusion in the high- and low-risk groups.ns, not significant; *p < 0.05; ***p < 0.001; ****p < 0.0001. (E) The 
relevance of risk score to drugs. (F) Differences in drug sensitivity between high- and low-risk groups. ****p < 0.0001.
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SNRPB as a risk element for adverse outcomes in mul-
tiple cancers, suggesting its potential role in advancing 
pathological stages and the TNM classification [31]. 
Corroborating this, our data pinpoints SNRPB as a det-
rimental factor, aligning with earlier findings. 
Investigations have demonstrated that SNRPB possibly 
exerts its effects in tumours via the cell cycle, spliceo-
some, and p53 signalling pathways [32]. Recent evi-
dence underscores SNRPB’s inhibitory influence on the 
p53 pathway in cervical carcinoma [32]. The specific 
role of SNRPB in DLBCL remains elusive. Acknowledging 
DLBCL’s intricate mechanism and phenotype land-
scape, the transition from a normal to malignant state 
in cells often involves shared functionalities like sus-
tained proliferation [33]. This continuous cell cycle 
engagement signifies an enduring cell cycle pathway 
activation. The cell cycle revolves around genetic repli-
cation and its consequent distribution to offspring 
cells [34]. Hence, we postulate that in DLBCL, SNRPB’s 
pathological role might be linked to the cell cycle 
pathway, a hypothesis that demands in-depth future 
research.

Centrosomal protein 290 (CEP290) originates from 
the gene encoding this particular protein. This pro-
tein’s structure comprises 13 potential coiled-coil 
domains, six KID motifs, three domains resembling 

tropomyosin, and a motif consistent with ATP/GTP 
binding site A [35]. Genetic mutations in CEP290 are 
linked to conditions such as Joubert syndrome and 
nephronophthisis. Moreover, antibodies targeting this 
protein have been tied to multiple cancer types [36, 
37]. Through bioinformatic tools and experimental 
assays, both in vitro and in vivo, our team pinpointed 
CEP290 as a promising DLBCL prognostic biomarker. 
Elevated CEP290 expression was more prevalent in 
tumour samples than in healthy ones. Current data 
suggests that centrosomal proteins, like CEP, are piv-
otal in tumour development [36]. For instance, Shan 
et  al. [36] proposed CEP290 as an emerging prognostic 
metric in liver cancer, influencing cell ferroptosis via 
the Nrf2 pathway. Shen et  al. [38] using bioinformatic 
approaches, associated CEP290 with papillary thyroid 
cancer prognosis. Similarly, Yu et  al. [39] linked CEP290 
to a heightened risk in hereditary nonpolyposis col-
orectal cancer. Our findings align with the understand-
ing that CEP290 serves as an unfavourable prognostic 
marker in DLBCL, potentially aiding its progression. To 
sum up, the potential biomarkers discussed warrant 
deeper investigative and clinical scrutiny.

Contemporary studies emphasize the distinctiveness 
of the tumour microenvironment (TME) across lym-
phoma types, particularly highlighting the inflamed 

Figure 8. C onstruction of competing endogenous RNA (ceRNA) network. The blue graphic represents significant gene, yellow 
represents microRNA (miRNA), and pink represents long non-coding RNA (lncRNA).
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Figure 9.  Analysis of single-cell RNA sequencing (scRNA-seq) data in the GSE182434 dataset. (A) Validation of cell clustering 
results. (B) The dot plot of the expression of marker genes in each cell cluster. (C) The umap clustering plot of the distribution of 
cell clusters. (D) The distribution of prognostic genes in DLBCL and normal groups. (E) The expression of prognostic genes in 
different cell clusters in control/DLBCL groups (left) and all samples (right). (F-H) The pseudotime analysis of prognostic genes. F: 
group; G: time; H: state. (I) The expression of prognostic genes in different branches of B cells.
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state present in DLBCL [40]. Insights from Benedetta 
Apollonio and team [40] underscore the importance of 
grasping the immune-stroma milieu in DLBCL to refine 
immunotherapeutic strategies. Based on our immuno-
assay outcomes, there’s a clear positive correlation 
between SNRPB and naive B cells in DLBCL cases. Past 
research has illuminated the induction of protein argi-
nine methyltransferase 5 (PRMT5) in naive B cells upon 
BCR stimulation. This induction augments through B 
cell receptor signalling, establishing a reciprocal 
enhancement with PI3K/AKT in lymphoma cells [41]. 
Such observations suggest SNRPB’s potential role in 

DLBCL progression, possibly by modulating naive B 
cell expression levels. This avenue might pave the way 
for fresh perspectives on DLBCL mechanisms. Yang 
and colleagues [42] devised an immune-centric scor-
ing model, predicated on immune cell infiltration, to 
forecast DLBCL outcomes, spotlighting the correlation 
between gamma-delta T cells and patient survival. In 
our studies, we discerned a positive relationship 
between CEP290 and gamma-delta T cells in DLBCL. 
Thus, CEP290 could potentially influence DLBCL’s prog-
nosis by modulating gamma-delta T cell dynamics. 
These findings could enrich our comprehension and 

Figure 10.  Validation of prognostic genes’ expression at protein level. (A) CEP290; (B) SNRPB. ***p < 0.001; ****p < 0.0001.
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drive the genesis of innovative DLBCL therapeutic 
targets.

The presentation of immune checkpoints on 
tumour-infiltrating lymphocytes (TILs) can lead to the 
exhaustion of CD4+ and CD8 + T cells, undermining 
their intrinsic immunocytotoxic capacity and hence, 
catalyzing tumour progression [43]. Ma et  al. [43] pos-
tulated that LAG-3 could emerge as a novel immuno-
therapeutic target. Concurrent administration with 
PD-1 inhibitors might counteract therapeutic resistance 
observed in DLBCL patients. Characterized by its 
33 kDa weight and 288 amino acid content, CD80 
(B7-1) is an immunoglobulin protein stemming from 
the CD80 gene [44]. Elevated CD80 expression has 
been documented across various malignancies [45]. 
The co-stimulatory ligands, CD80(B7-1) and CD86 
(B7-2), which originate from antigen-presenting cells 
(APC), can transmit either augmentative signals 
through the CD28 receptor or suppressive ones via the 
CTLA-4 (CD152) receptor [46]. Epigenetic avenues, 
notably promoter methylation, have been identified as 
modulators of CD80 and CD86 expression [45]. From Li 
et  al.’s findings [47], CD80 emerged as a recurring tar-
get for the miR-30 family, and BCL6’s association with 
ibrutinib resistance in activated B cell-like DLBCL was 
underscored. In our exploration, we identified pro-
nounced variances in the expression of three immune 
checkpoint genes: CD276, CD80, and TNFSF4. 
Specifically, CD276(B7-H3), hailing from the B7 protein 
family, occupies a pivotal position in cancer dynamics. 
This immune regulatory protein finds expression selec-
tively in both tumourous and immune cells situated 
within the TME [48]. Findings by Wang et  al. [49] insin-
uate that cancer stem cells exploit CD276 for immuno-
evasion, hinting at potential CD276 targeting to 
diminish CSCs in specific carcinomas. The co-stimulatory 
checkpoint protein TNFSF4(OX40L), expressed in 
diverse cell types, has previously been linked to height-
ened antitumour T-cell activity [50]. Research by Jason 
Roszik and colleagues [50] correlated diminished 
TNFSF4 mRNA expression with unfavourable prognosis 
across melanoma stages. Based on our findings, there’s 
a plausible linkage wherein SNRPB and CEP290 modu-
late CD276, CD80, and TNFSF4 expressions, subse-
quently influencing DLBCL progression. The intricate 
underpinnings of this connection warrant deeper 
exploration in subsequent investigations.

LncRNAs have established their significance in 
tumour progression, encompassing initiation, growth, 
invasion, and metastasis, marking them as promising 
epigenetic cancer biomarkers and therapeutic candi-
dates [51]. Pivotal roles of microRNAs in physiological 
pathways, as well as in disease initiation and 

progression, particularly across various cancers, have 
been spotlighted in preceding investigations [52,53]. A 
specific revelation by Zhao and colleagues [54] high-
lighted Lnc SMAD5-AS1’s capacity to act as a ceRNA, 
thereby stifling DLBCL proliferation via the 
Wnt/β-catenin route. This mechanism operates by 
sponging miR-135b-5p, augmenting APC expression. In 
another study, Sun et  al. [55] pinpointed 
hsa-miR-513a-5p as a microRNA intricately linked with 
the onset and evolution of uveal melanoma. Our data 
linked SNRPB with hsa-miR-513a-5p, leading us to pos-
tulate a potential pathway wherein hsa-miR-513a-5p 
modulates DLBCL progression via SNRPB regulation. 
Advanced techniques like scRNA-seq have revolution-
ized our understanding of genetic and transcriptional 
dynamics within individual cancerous and immune 
cells across diverse cancers. Utilizing scRNA-seq, Ye and 
team [56] curated a detailed cellular atlas encompass-
ing both malignant and benign cells in DLBCL. Their 
insights provide a novel perspective on B cell lym-
phomagenesis, which could guide targeted immuno-
therapy. Additionally, our analyses discerned 
pronounced SNRPB and CEP290 expressions within B 
cells, suggesting a conceivable impact of these prog-
nostic markers on B cell-mediated pathways, influenc-
ing DLBCL genesis.

In summary, this study pioneers in discerning the 
prognostic potential of SNRPB and CEP290 within 
DLBCL. While our findings are promising, this investi-
gation isn’t devoid of limitations. Our study was con-
ducted based on a limited number of samples from 
public databases, and expanding the clinical sample 
size was a pressing issue. Although we have validated 
the gene expression by immunohistochemistry, the 
validation by a large number of cell or animal experi-
ments is still very important. In addition, the validity 
and applicability of drugs obtained from the analysis 
need to be verified in the clinical practice. Emphasizing 
the imperative for deeper experimental mechanistic 
probes and its translational clinical research, we remain 
committed to unravelling the mysteries surrounding 
these genes.
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