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ABSTRACT ARTICLE HISTORY
Background: Diffuse large B-cell lymphoma (DLBCL), the most prevalent type of non-Hodgkin's Received 27 March 2024
lymphoma, exhibits significant correlations with efferocytosis-related molecules (ERMs) concerning Revised 28 June 2024
invasion, metastasis, and clinical outcomes. This study aims to establish an efferocytosis-related Accepted 17 October 2024
gene signature specifically linked to DLBCL. KEYWORDS

Methods: Key module genes linked to DLBCL were identified via weighted gene co-expression Diffuse large B cell
network analysis (WGCNA) in GSE32018. Univariate Cox analysis of GSE31312 revealed ERMs lymphoma; efferocytosis;
associated with DLBCL survival. Differential expression analysis identified differentially expressed prognostic signature; risk
genes (DEGs) between DLBCL subtypes and normal samples. Venn diagram analysis identified subgroups; tumour
common DEGs and key module genes. A DLBCL gene signature was built by using univariate Cox ~ 'mmune

and least absolute shrinkage and selection operator (LASSO) analysis. Gene functional enrichment, microenvironment
immune microenvironment, and immunotherapy analyses compared two risk subgroups.

Prognostic gene expression was validated at the single-cell level.

Results: In the GSE32018 dataset, 1760 key module genes related to DLBCL were identified.

Using GSE31312, 14 ERMs associated with DLBCL prognosis were determined.Then, an ERMs-related

prognostic signature, including small nuclear ribonucleoprotein polypeptides B (SNRPB) and

centrosomal protein 290 (CEP290), was established. Independent prognostic analysis showed that

the RiskScore derived from this signature was a prognostic factor. Significant immune

microenvironment differences were observed between two risk subgroups. Additionally,

chemotherapeutic drug sensitivity results indicated the signature could predict therapeutic

response. Eventually, expression of SNRPB and CEP290 was confirmed in B cells.

Conclusion: The prognostic signature comprised of SNRPB and CEP290 based on ERMs-DEGs was

established, providing a theoretical basis and reference value for DLBCL research.

1. Introduction activated B cell-like (ABC-like), and a minor fraction
that remains unclassified [5]. While the majority of

) ) ) DLBCL patients show positive responses to the stan-
and Hodgkin categories [1]. Among the non-Hodgkin 4,1y g_cHOP regimen-a combination of rituximab,

types, Diffuse large B cell lymphoma (DLBCL) stands  cycjophosphamide, doxorubicin, vincristine, and
out as the predominant subtype, representing about  prednisolone-sustainable  remissions are  rare.
one-third of global lymphoma diagnoses [2-4]. Consequently, the overall survival (OS) outlook for
Molecular analysis has further segmented DLBCL  DLBCL patients remains unsatisfactory [5,6]. This
into three subcategories: central B cell-like (GCB-like), underscores the wurgent need for innovative

Lymphomas are broadly classified into non-Hodgkin
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molecular targets in DLBCL treatment and the
imperative to develop novel biomarkers for improved
early detection and tailored treatment.

In the tumour microenvironment, a variety of
immune cells, including macrophages, dendritic cells,
regulatory T cells, and both CD8+ and CD4+ T cells,
engage in the process of efferocytosis to eliminate
apoptotic tumour cells [7]. The efferocytosis mecha-
nism unfolds through four sequential stages: the
emission of ‘call me’ signals by apoptotic cells, the rec-
ognition of these dying cells by phagocytes, their
direct interaction, and the eventual release of
anti-inflammatory mediators [8]. While earlier studies
underscored the potential of targeting molecules and
pathways associated with efferocytosis in cancer ther-
apy [9,10], other research revealed their significant
relationship with malignancy invasion, metastasis, and
clinical progression, emphasizing their crucial role in
the outcome of cancer treatments [7]. Yet, insights
into the prognostic significance and therapeutic
potential of efferocytosis-related molecules (ERMs)
specifically in DLBCL remain to be fully explored.

In our research, we pinpointed genes related to
efferocytosis within DLBCL. By examining their prog-
nostic significance, we explored potential biological
pathways they might be involved in. This offers an
analytical foundation for assessing the prognosis of
DLBCL patients while shedding light on molecular
shifts that occur throughout the disease’s progression.

2. Materials and methods
2.1. Data source

Multiple gene expression profile datasets of DLBCL
samples were collected from Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/). GSE32018 datasets included 22 DLBCL and 7
normal samples, while GSE31312 datasets contained
470 DLBCL samples with survival information.
Additionally, single-cell RNA sequencing (scRNA-seq)
data from 4 DLBCL and 4 normal tissues were
retrieved from GSE182434. The prognostic model val-
idation dataset was downloaded from The Cancer
Genome Atlas (TCGA) database, which included 48
DLBCL samples with survival information. A total of
72 efferocytosis-related molecules (ERMs) were
derived from reported literature [11,12].

2.2. Weighted gene co-expression network
analysis (WGCNA)

The DLBCL was considered as clinical trait for WGCNA
of GSE32018 datasets via ‘WGCNA’' (version 1.70-3)

package [13]. Firstly, we clustered all samples and
removed outliers to ensure the accuracy of the analy-
sis. Then, a trait heat map and sample dendrogram
were constructed, and the soft threshold was deter-
mined. The similarity between genes was calculated
according to the adjacency, and a phylogenetic tree of
the genes was obtained. The modules were divided via
dynamic tree cutting algorithm with a minimum mod-
ule size of 100. We then classified the genes into dif-
ferent modules by dynamic tree cutting algorithm. The
module dissimilarity threshold (MEDissThres) was set
to 0.2 to merge the similar modules. Finally, the mod-
ules with the highest correlation to DLBCL were used
as key modules for subsequent analysis.

2.3. Consensus clustering analysis and assessment

In this study, GSE31312 was applied as the training set.
Univariate COX analysis was utilized to screen ERMs
associated with DLBCL patient survival. With the assis-
tance of the ‘ConsensusClusterPlus’ package (version
1.62.0) [14], 470 DLBCL samples were clustered based
on the expression of ERMs linked to patient survival. By
excluding samples without survival data, we carried
out a Kaplan-Meier (K-M) survival analysis based on dif-
ferent clustering subtypes. To examine the heterogene-
ity among different subtypes, a principal component
analysis (PCA) was implemented using ‘stats’ package
(version 0.12.1). Meanwhile, ERMs linked to DLBCL
patient survival were analyzed between different sub-
types using ‘ggpubr’ package (version 0.4.0). With refer-
ence to the LM22 gene set, the CIBERSORT algorithm
(version 1.03) was applied to calculate the proportion
of 22 immune cells in all tumour samples. The expres-
sion levels of 23 immune checkpoints [15] were com-
pared across different subtypes using the rank-sum test.

2.4. Differential analysis

In GSE31312, the ‘limma’ package (version 1.36.0) [16]
was executed to obtain the differentially expressed
genes1 (DEGs1) between different clustering subtypes,
using adj.p<0.05 and |log,FC| > 0.5 as the threshold.
Gene Ontology (GO) enrichment and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) enrich-
ment analyses of DEGs1 was conducted via ‘clusterPro-
filer’ package (version 4.4.4) [17], adopting adj.p <0.05
as the criteria. The same method was utilized to obtain
DEGs2 between DLBCL and normal groups in GSE32018
datasets. Volcano plot and heat map were applied to
illustrate DEGs. The intersection of DEGs1, DEGs2, and
key module genes associated with DLBCL were deter-
mined using a Venn diagram.
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2.5. Risk score-based subgroup analysis of DLBCL
patients

Univariate cox and least absolute selection and
shrinkage operator (LASSO) regression analyses were
yielded to screen prognostic ERMs in GSE31312 data-
sets. The risk score model calculating formula was:
risk score = Z?:1(coefﬁcient(genei)*expr(genei)). Based
on median value of risk score from each sample,
DLBCL patients with survival information were cate-
gorized into two risk subgroups (low-risk and
high-risk). The prognostic reliability of the model was
assessed by K-M curves and receiver operating char-
acteristic (ROC) curves for 1-, 2-, and 3-year intervals.
Simultaneously, TCGA-DLBCL datasets was regarded
as an external verification set for the risk model.

2.6. Clinical nomogram model

For the construction of the clinical nomogram model,
the risk score, sub-type (GCB), age, gender, Ann Arbor
stage (AAS), ECOG performance status, International
Prognostic Index (IP1) score, presence of bulky disease
(Bulky code), and lactate dehydrogenase (LDH) levels
were enrolled into univariate and multivariate Cox
regression analyses to authenticate independent
prognostic predictors. A nomogram incorporating
independent factors was developed to predict 1-, 2-,
and 3-year survival probability of DLBCL patients. The
predictive accuracy of the nomogram was evaluated
using calibration curves and ROC curves.

2.7. Gene set enrichment analysis (GSEA)

The ‘limma’ package [18] was utilized to calculate the
log,FC between two risk subgroups. Then, based on
GO (biological process) and KEGG gene set, GSEA
(adj.p <0.05) was performed for find related pathways
between two risk groups.

2.8. Immune feature estimation and therapy
analysis

Leverage LM22 gene set, the CIBERSORT algorithm
was yielded to calculate the expression of 22 immune
cells in DLBCL microenvironment. Subsequently, cor-
relation coefficients between differential immune cells
and prognostic genes associated with ERMs were ana-
lyzed. The ‘estimate’ package was applied to obtain
and compare the Immune score, Stromal score and
ESTIMATE score of tumour tissues. Meanwhile, in order
to study the immune status of DLBCL, differences in
11 immune checkpoint genes between the high- and
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low-risk groups were compared [19]. The Spearman
method was used to analyze the correlations between
risk score and immune checkpoint genes. Additionally,
the TIDE score, Dysfunction score, Exclusion score,
CD8, and CD274 were compared between the high-
and low-risk groups. The correlation between risk score
and the inhibitory concentration (IC;,) of 138 drugs
was analyzed using ‘pRRophetic’ package (version 0.5).

2.9. Construction of competing endogenous RNA
(ceRNA) network

The miRNAs associated with prognostic genes were pre-
dicted through miRWalk database (http://mirwalk.umm.
uni-heidelberg.de/), with screening criteria of energy <
—15 and bindingp = 1. The IncRNAs associated with
miRNAs were predicted using Starbase database (https://
starbase.sysu.edu.cn/index.php), with screening criteria
of clipExpNum > 1 and geneType=IlincRNA. Moreover,
the ‘IncRNA-mRNA-miRNA’" network was constructed via
Cytoscape software (version 3.8.2) [20].

2.10. SCRNA-seq analysis

Firstly, scRNA-seq data was filtered using R package
‘Seurat’ (version 5.0.1) [21] in GSE182434. The
‘PercentageFeatureSet’ function was used to calculate
the mitochondrial genes, and cells with fewer than
10% mitochondrial genes were retained. Subsequently,
the Find Variable Features function in the R package
‘Seurat’ was used to screen out the top 2000 highly
variable genes for downstream analysis. Principal com-
ponent analysis (PCA) was then conducted to reduce
dimensionality. Next, FindNeighbors and FindClusters
functions were used for unsupervised clustering analy-
sis of cells. We then wused Uniform Manifold
Approximation and Projection (UMAP) to display the
results of the clustering. The marker genes of each cell
cluster were compared with the marker genes of each
cell type in the CellMarker database to determine the
type of cell subgroup type. The R package ‘SingleR’
(version 2.0.0) was deployed to helping annotate cell
types. Following this, the expression of prognostic
genes in different cell types was analyzed by plotting
UMAP maps and violin plots. Monocle3 (version 2.14.0)
[22] was wused for cell trajectory analysis and
‘CellPhoneDB’ was used for cell communication analysis.

2.11. Inmunohistochemistry

In this study, sample tissues were obtained from
tumour tissues of patients with diffuse large B cell


http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://starbase.sysu.edu.cn/index.php
https://starbase.sysu.edu.cn/index.php

4 €> JLTANGETAL.

lymphoma (DLBCL), and normal lymph nodes that
were not invaded by the tumour. Approval from the
hospital ethics committee and informed consent from
the patients were obtained. During the procedure,
the resected tumour tissue and adjacent normal
lymph nodes were initially assessed by the patholo-
gist to ensure the representativeness and quality of
the samples. The samples were then rapidly sepa-
rated and labelled separately to avoid confusion. To
maximise the retention of biological information in
the tissues, samples were placed in collection tubes
containing RNA stabiliser immediately after collection
and rapidly frozen for processing. They were first
snap-frozen in liquid nitrogen and then transferred to
a -80°C  ultra-low temperature refrigerator for
long-term storage. The entire sample collection pro-
cess lasted from May 2023 to April 2024, during
which time the steps described above were rigor-
ously carried out to ensure sample consistency and
study reproducibility. Tumour paraffin sections were
immunostained with antibodies against CEP290 (poly-
clonal, 1:100, Proteintech) and SNRPB (polyclona,
1:200; Proteintech) using standard protocols. Ready-to-
use two-step abiotin immunohistochemical assay kit
(PV9000; Zhongshan Golden Bridge) was used to
detect CEP290 and SNRPB in tissues. Clinical informa-
tion of patients and healthy control in Supplementary
Table 1. This study was approved by Ethics Committee
of Seventh Affiliated Hospital, Sun Yat-Sen
University(KY-2024-063-01).

2.12. Statistical analysis

All analyses were executed in R software (version
4.2.2). K-M the log-rank test were used to evaluate the
associations with survival time. P value < 0.05 was
considered statistically significant.

3. Results

3.1. Identification of key module genes related to
DLBCL in GSE32018

To seek out key modules related to DLBCL, we con-
ducted the WGCNA. The results of sample clustering
indicated that there were no outlier samples
(Supplementary Figure 1). The optimal soft threshold
was determined to be 5. When the mean connectivity
tended to zero, the ordinate of the scale-free fit index
approached the threshold value of 0.85, indicated by
the red line (Figure 1A). A total of 11 modules were
identified using the dynamic tree cut algorithm and
by merging modules (Figure 1B). The MEred (Cor =

0.83) and MEpurple (Cor=-0.75) modules were mark-
edly correlated with patient/control (Figure 1C), lead-
ing to the identification of 1,760key module genes
associated with DLBCL for subsequent analyses
(Figure 1D).

3.2. The ERMs associated with prognosis in DLBCL

Regarding the ERMs associated with the prognosis
in DLBCL, 14 ERMs were identified through univari-
ate Cox regression analysis as being related to
DLBCL prognosis (Figure 2A). We divided 470 DLBCL
patients from the GSE31312 dataset into two sub-
types: Cluster 1 (312 samples) and Cluster 2 (158
samples), based on the expression of ERMs linked
to DLBCL prognosis (Figure 2B-C). K-M analysis
revealed a significant survival difference between
the two subtypes, with Cluster 1 exhibiting poorer
OS (Figure 2D). PCA also demonstrated heterogene-
ity between the two subtypes (Figure 2E). Notably,
the expression of 11 ERMs associated with DLBCL
prognosis differed significantly between the two
subgroups (Figure 2F). There were significant differ-
ences in the abundances of 8 immune cell types,
including memory B cells, CD8 T cells, CD4 naive T
cells, activated CD4 memory T cells, resting NK cells,
M1 Macrophages, M2 Macrophages, and neutrophils
(Supplementary Figure 2A). Additionally, 14 immune
checkpoint genes, encompassing CD244, CD96,
CSF1R, CTLA4, HAVCR2, IDO1, KDR, KIR2DL1,
KIR2DL3, LAG3, PDCDI1LG2, TGFB1, TGFBR1, and

TIGIT, were significantly differentially expressed
between the two subtypes (Supplementary
Figure 2B).

3.3. Screening of candidate genes associated with
ERMs in DLBCL

Totally 255 DEGs1 were identified in GSE31312 data-
base, comprising 101 significantly up-regulated and
154 significantly down-regulated genes in cluster 1
(Figure 3A-B). To understand the biological significance
of DEGs1, we performed functional enrichment analy-
sis. The GO analysis revealed that these DEGs were
mainly involved in the ‘regulation of peroxisome prolif-
erator activated receptor (PPAR) signalling pathway’
and ‘dystrophin-associated glycoprotein complex’
(Figure 3C). The PPAR signalling pathway plays a cru-
cial role in lipid metabolism and energy homeostasis,
processes known to be dysregulated in cancer, includ-
ing DLBCL [23]. The dystrophin-associated glycoprotein
complex is significant in maintaining cellular integrity,
and its disruption may contribute to the oncogenic
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Figure 1. Identification of key module genes for diffuse large B-cell lymphoma (DLBCL) by weighted gene co-expression network anal-
ysis (WGCNA). (A) Selection of the optimal soft-thresholding (power). (B) Hierarchical clustering of genes and module identification. (C)
Heatmap of the relationships between gene modules and differential immune cells. (D) Scatter plots of correlation between module

genes and clinical traits (DLBCL and normal).

processes in DLBCL [24]. Moreover, KEGG pathway
analysis suggested that DEGs1 were mainly enriched in
‘Aldosterone synthesis and secretion’ as well as ‘Mineral
absorption’ (Figure 3D). Aldosterone synthesis and
secretion are linked to cellular growth and immune
response, which are critical aspects of DLBCL patho-
physiology [25]. And the mineral absorption pathway
is crucial for maintaining cellular ionic balance and

metabolic functions, when dysregulated, can contrib-
ute to cancer development and progression [26]. In
summary, these DEGs1 are potentially critical in under-
standing the microenvironmental interactions and
extracellular signalling pathways that contribute to
DLBCL pathogenesis. Similarly, from the GSE32018
database, we identified 2,994 DEGs2, with 1,803 signifi-
cantly  up-regulated and 1,191  significantly
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down-regulated genes in DLBCL samples (Figure 3E-F).

Hence, 9 candidate genes associated with ERMs in
DLBCL were obtained by overlapping DEGs1, DEGs2

and key module genes related to DLBCL (Figure 3G).

3.4. Prognostic signature based on ERMs
associated with survival

Univariate regression analysis identified 2 significant
genes (HR # 1 & p<0.05) in the GSE31312 dataset,



GSE31312 cluster DEGs
7 ;
15 - HAVCR2 | © activation [101]
! 1 ®| < inhibition [154]
: 1| e ns[15911]
| s{c7A7
' (]
: '
: :
' TmeER212 '
=10 ' ISAAL1
= 1 GLUL, ~ DOCK4
k= ! DNMIL ©
Kl ; LAMB1
=3 :
S :
o [
T 1
5 ‘
__________ JI -
'
0 i

-1 0

log2(Fold Change)

. . __cellular transition metal ion homeostasis
regulation of peroxisome proliferator activated receptor signaling pathway
copper ion transport
cellular zinc ion homeostasis
stress response to metal ion
response to molecule of bacterial origin
» zinc ion homeostasis
. ) transition metal ion homeostasis
peroxisome proliferator activated receptor slgnallnq pathway
vasculogenesis
. G me w desmosome
eukaryotic translation initiation factor 4F complex
) __apical cortex
peptidase inhibitor complex
cell-cell junction
ell cortex region
photoreceptor cell cilium
. . cornified envelope
dystrophin-associated gl&coproleln complex
9+0 non-motile cilium
leak channel activity
narrow pore channel activity
iron ion binding
) ) . DZ domain binding
dicarboxylic acid transmembrane transporter activity
organic acid:sodium s%mport_er activity
ile acid binding

. _FAD bindin
serine-type peptidase activity

sefine r activi

w

A TIATT AT A

-
b o
(O]
S
o
2
m
3
o)
-
(]
Q
o)
o
o'
@
3
23

hsa05152

type
[ molecular function
= cellular component
[ biological process

|||gi|]ﬁr“||||||||u|

ID
hsa04978
hsa05164
hsa04925

GSE32018 DLBCL DEGs
ST | GMPPA_ JRPL30
CARIK2N2 . " bAric

6 ., IPFONg  GBABCAPNI

NS TR 12

g

o

g4
2

)

kel

]

n

- activation

activat [|1803]
« inhibition [l 191]
ens| 44

4

WGCNA-DLBCL

Cluster-DEGs

Tumor-DEGs

hsa04146
hsa05152
hsa01212

o

5 10
GeneNumber

n

=

B

ANNALS OF MEDICINE 4 7

cluster TOP50 DEGs heatmap

Type
| \ RHBDL1
RO3
BIBD17

C

%

| | Type
Cluster1

- Cluster2

VO]
'-I\)I
N
S35

e

5

I-s

EeH TS

Iy

—OBNGZ:
—‘Eg_‘ (IS

DNRN:

ZADOTLS
SR e
e

A ZO00FITWOOT:;
SERss
A )

ST R

7
{30

ITIZWOP0NCHNNTPCTZ0:
>

QU0
ORI,
PO

@

©

@

o
&

Pt
=
[

IO IZOW=A0TOB >

O 10}
NZTIEOSE S

i

fu

ool
2.

Q=X
S
o
Hody

CnoNT
PO
@

A

>
=
Ry
N
@,
by

y9150esU

Z-score

logFC
downregulated o

upl'egUIateddecreasing|§:reas,ing
Description
Mineral absorption
Influenza A
Aldosterone synthesis and secretion
Peroxisome
Tuberculosis
Fatty acid metabolism

DLBCL TOP50 DEGs heatmap

Type
2 [ DLBCL

I Normal
4

Figure 3. Identification of candidate genes for DLBCL. (A) The volcano map of differentially expressed genes (DEGs) between
cluster 1 and cluster 2 in the GSE31312 database. (B) The heat map of top50 DEGs in the GSE31312 database. (C, D) The Gene
ontology (GO) terms (C) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways (D) enriched in DEGs. (E) The volcano
map of DEGs between DLBCL and normal samples in the GSE32018 dataset. (F) The heat map of top50 DEGs in the GSE32018

dataset. (G) The Venn diagram of 9 candidate genes.



8 €> JLTANGETAL.

namely SNRPB and CEP290 (Figure 4A). To further dig
out the prognostic genes, LASSO regression analysis
was conducted on 2 significant genes to unearth the
optima (Figure 4B-C). Ultimately, SNRPB and CEP290
were selected as prognostic genes for building a
ERMs-related prognostic signature with DLBCL. Then,
DLBCL patients were divided into two risk groups
(Figure 4D). High expression of 2 prognostic genes were
centred on the high-risk group. Notably, we found sig-
nificant survival differences between two risk groups
and patients in the high-risk DLBCL group had poor
survival rates (Figure 4E). To further evaluate the reliabil-
ity of the model, the AUC value of the model in fore-
casting 1-, 2-, 3-year survival of LUAD patients was 0.60,
0.65, and 0.63 in GSE31312 datasets, indicating the risk
model could forecast the survival status of DLBCL
patients (Figure 4F). Next, we further validated the risk
model in the external validation datasets (TCGA-DLBCL).
Consistent with the results detected based on GSE31312
datasets (Figure 4G), as anticipated, patients with
high-risk DLBCL exhibited poorer OS (Figure 4H). AUC
values of the 1-, 2- and 3-year were basically greater
than 0.60 (Figure 4l). These results showed that novel
ERMs-related gene signature exhibited satisfactory pre-
dicting performance in the validation cohort.

3.5. Independent prognostic analysis for DLBCL
patients

The results of Cox analyses suggested that RiskScore was prog-
nostic independent factors (p <0.05) (Figure 5A-B). The nomo-
gram containing 1-, 2-, 3-year survival rates was generated
(Figure 5C). The calibration and ROC curves proved that the
feasibility of the nomogram was effective (Figure 5D-E).

3.6. Differential gene enrichment analysis in risk
subgroups

We performed GSEA analysis in risk subgroups. GO
results demonstrated that ‘ribonucleoprotein complex
biogenesis’ was enriched in high-risk groups and ‘ade-
nylate cyclase-modulating G protein-coupled receptor
signalling’ was enriched in low-risk groups (Figure 6A-B).
KEGG results demonstrated that ‘Cell cycle’ was enriched
in high-risk groups and ‘Cytokine-cytokine receptor
interaction’ was enriched in low-risk groups (Figure 6C-D).

3.7. Immune infiltration analysis

To explore the immune microenvironment of DLBCL,
we analyzed the expression of 22 immune cells
between two sample groups in  GSE31312
(Supplementary Figure 3A). There were 12 immune cell

abundances that differed significantly in two
risk-subgroups, including naive B cells, memory B cells,
CD8 T cells, naive CD4 T cells, activated memory CD4
T cells, regulatory T cells, gamma delta T cells, resting
NK cells, Monocytes, Macrophages M1, Macrophages
M2, and Neutrophils (Supplementary Figure 3B). The
correlation analysis revealed that SNRPB was positively
associated with naive B cells. CEP290 was positively
associated with gamma delta T cells (Figure 7A). We
found that the stromal score was significantly higher
in the low-risk group, while the immune score was sig-
nificantly higher in the high-risk group (Figure 7B).
There were 3 significantly differentially expressed
immune checkpoint genes, including CD276, CD80,
and TNFSF4 (Figure 7C). We also found that there were
certain positive correlations between the risk score
and the 9 immune checkpoints (PVR, HAVCR2, CD86,
CD80, CD47, CD276, (D244, (CD226 and CD160)
(Supplementary Figure 3C). It was found that markers
of immune exclusion, immune dysfunction, and CD274
were significant in both high- and low-risk group
(Figure 7D). In order to discover potential drugs, we
compared IC,, of 138 drugs between all samples. There
was a significant correlation between the risk score
and the 27 drugs (p<0.05) (Figure 7E). Significant dif-
ferences in sensitivity to 27 drugs were observed
between high- and low-risk groups (Figure 7F).

3.8. The ceRNA network analysis

The relevance of this ceRNA network analysis lies in its
potential to elucidate the post-transcriptional regula-
tory interactions that affect SNRPB and CEP290, both
of which are critical to the pathology of the disease
under investigation. Therefore, to explore the regula-
tory mechanisms of SNRPB and CEP290, we con-
structed a ‘IncRNA-mRNA-miRNA’ network consisting of
44 IncRNAs, 7 miRNAs, and 2 mRNAs. This network
comprised 53 nodes and 69 edges, illustrating the
complex interactions between these RNA molecules.
Notably, SNRPB was associated with hsa-miR-513a-5p,
while hsa-miR-629-5p influenced the expression of
CEP290 (Figure 8). This insight into the RNA-based reg-
ulatory landscape provides a foundation for further
functional studies and highlights potential avenues for
targeted therapeutic intervention.

3.9. Expression analysis of prognostic genes in
different cells

In order to further analyze the expression and regula-
tion of prognostic genes at the single-cell level, we
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Figure 4. Establishment of prognostic signature for DLBCL. (A) Two prognostic genes obtained by univariate Cox regression anal-
ysis. (B, C) The plot of gene coefficients (B) and error plots for 10-fold cross-validation (C) in least absolute shrinkage and selection
operator (LASSO) analysis. (D) The risk curve, survival state distribution, and the expression of prognostic genes. (E) The KM sur-
vival curves of high- and low-risk groups. (F) The receiver operating characteristic (ROC) curves of the prognostic signature with
1, 2, 3 years as survival time points. AUC, area under the curve. (G) The risk curve, survival state distribution, and the expression
of prognostic genes in the TCGA-DLBCL dataset (validation set). (H) The KM survival curves of two risk groups in the TCGA-DLBCL
dataset. (1) The ROC curves of prognostic signature in the TCGA-DLBCL dataset.

applied the GSE182434 datasets for analysis after cell
filtration (Supplementary Figure 4A). In total, 2000
highly variable genes were identified (Supplementary
Figure 4B). PCA plots revealed that P-values of 30 PCs
were extremely significant (Supplementary Figure 4C).
Consequently, we selected these 30 PCs for

subsequent analyses, and the cells were classified into
11 clusters (Figure 9A) and were annotated as NK cells,
Monocyte/Macrophage, B cells, and T cells (Figure
9B-C). Supplementary Figure 4D showed the distribu-
tion of 4 cell subsets in both normal and DLBCL
groups. UMAP and violin diagrams revealed that the
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Figure 5. Independent prognostic analysis and the creation of nomogram. (A, B) The results of univariate (A) and multivariate Cox
(B) Cox independent prognostic analysis. (C) The nomogram constructed based on two prognostic genes. (D) The calibration curve
of the nomogram. (E) The ROC curves of the nomogram with 1, 2, 3 years as survival time points.

prognostic genes were expressed in B cells, and the
expression levels of 2 prognostic genes in B cells from
the DLBCL samples were lower than those in B cells
from the normal samples (Figure 9D-E). Cell communi-
cation analysis identified strong interactions between
key cells, with the highest number of receptor-ligand
pairs occurring between monocytes/macrophages and
NK cells (Supplementary Figure 5A). This finding was
further corroborated by receptor-ligand interaction
analysis (Supplementary Figure 5B). Using Monocle 2
for pseudotime analysis, we discovered that B cells
diverged into 2 branches, possibly representing trans-
formation trajectories from normal to malignant cells,

and it appeared that B cell differentiation in the dis-
ease group occurred earlier (Figure 9F-H). The dynamic
expression profiles of 2 prognostic genes across 5
states were depicted in Figure 9I. We found that the
expression of SNRPB affected the state of B cells.

3.10. Analysis of prognostic gene expression at
protein level

Immunohistochemical results were summarized in
Figure 10A-B. We observed that CEP290 and SNRPB
proteins were more highly expressed in the tumour
group compared to the normal group.
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4. Discussion

From our understanding, advancements in DLBCL treat-
ments have particularly been pronounced for patients
undergoing subsequent therapeutic lines. Although

emerging therapeutic avenues address relapsed/refrac-
tory cases of DLBCL, challenges persist for patients in
advanced therapy stages [27]. Efferocytosis, crucial for
the non-inflammatory

tissue equilibrium, involves
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Figure 7. Immune infiltration analysis. (A) The relevance of prognostic genes to differential immune cells. *p<0.05; ** p<0.01. (B) The
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clearance of apoptotic cells, curbing undesired inflam-
matory reactions and avert autoimmune disturbances
[28]. Amir Tajbakhsh and colleagues identified soluble
receptors/ligands tied to efferocytosis, revealing both
their clinical relevance and potential as diagnostic and
prognostic tools [29]. Yet, insights into ERMs’ prognostic
and therapeutic potential in DLBCL remain scarce.
Motivated by this, we crafted a gene signature focus-
ing on efferocytosis in relation to DLBCL.

Produced by the SNRPB gene, Small nuclear ribonu-
cleoprotein polypeptides B and B1 are common
nuclear components of snRNPs, specifically U1, U2, U4/
U6, and U5 [30]. These particles contribute to pre-mRNA
splicing, suggesting the protein encoded by SNRPB
might influence snRNP structure or the splicing pro-
cess. In various tumours, there’s a link between SNRPB,
immune cell infiltration, and immunomodulation gene
expression [30]. Notably, local studies highlighted
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SNRPB as a risk element for adverse outcomes in mul-
tiple cancers, suggesting its potential role in advancing
pathological stages and the TNM classification [31].
Corroborating this, our data pinpoints SNRPB as a det-
rimental factor, aligning with earlier findings.
Investigations have demonstrated that SNRPB possibly
exerts its effects in tumours via the cell cycle, spliceo-
some, and p53 signalling pathways [32]. Recent evi-
dence underscores SNRPB's inhibitory influence on the
p53 pathway in cervical carcinoma [32]. The specific
role of SNRPB in DLBCL remains elusive. Acknowledging
DLBCLs intricate mechanism and phenotype land-
scape, the transition from a normal to malignant state
in cells often involves shared functionalities like sus-
tained proliferation [33]. This continuous cell cycle
engagement signifies an enduring cell cycle pathway
activation. The cell cycle revolves around genetic repli-
cation and its consequent distribution to offspring
cells [34]. Hence, we postulate that in DLBCL, SNRPB’s
pathological role might be linked to the cell cycle
pathway, a hypothesis that demands in-depth future
research.

Centrosomal protein 290 (CEP290) originates from
the gene encoding this particular protein. This pro-
tein’s structure comprises 13 potential coiled-coil
domains, six KID motifs, three domains resembling

tropomyosin, and a motif consistent with ATP/GTP
binding site A [35]. Genetic mutations in CEP290 are
linked to conditions such as Joubert syndrome and
nephronophthisis. Moreover, antibodies targeting this
protein have been tied to multiple cancer types [36,
37]. Through bioinformatic tools and experimental
assays, both in vitro and in vivo, our team pinpointed
CEP290 as a promising DLBCL prognostic biomarker.
Elevated CEP290 expression was more prevalent in
tumour samples than in healthy ones. Current data
suggests that centrosomal proteins, like CEP, are piv-
otal in tumour development [36]. For instance, Shan
et al. [36] proposed CEP290 as an emerging prognostic
metric in liver cancer, influencing cell ferroptosis via
the Nrf2 pathway. Shen et al. [38] using bioinformatic
approaches, associated CEP290 with papillary thyroid
cancer prognosis. Similarly, Yu et al. [39] linked CEP290
to a heightened risk in hereditary nonpolyposis col-
orectal cancer. Our findings align with the understand-
ing that CEP290 serves as an unfavourable prognostic
marker in DLBCL, potentially aiding its progression. To
sum up, the potential biomarkers discussed warrant
deeper investigative and clinical scrutiny.
Contemporary studies emphasize the distinctiveness
of the tumour microenvironment (TME) across lym-
phoma types, particularly highlighting the inflamed
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Figure 9. Analysis of single-cell RNA sequencing (scRNA-seq) data in the GSE182434 dataset. (A) Validation of cell clustering
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state present in DLBCL [40]. Insights from Benedetta
Apollonio and team [40] underscore the importance of
grasping the immune-stroma milieu in DLBCL to refine
immunotherapeutic strategies. Based on our immuno-
assay outcomes, there’s a clear positive correlation
between SNRPB and naive B cells in DLBCL cases. Past
research has illuminated the induction of protein argi-
nine methyltransferase 5 (PRMT5) in naive B cells upon
BCR stimulation. This induction augments through B
cell receptor signalling, establishing a reciprocal
enhancement with PI3K/AKT in lymphoma cells [41].
Such observations suggest SNRPB’s potential role in

DLBCL progression, possibly by modulating naive B
cell expression levels. This avenue might pave the way
for fresh perspectives on DLBCL mechanisms. Yang
and colleagues [42] devised an immune-centric scor-
ing model, predicated on immune cell infiltration, to
forecast DLBCL outcomes, spotlighting the correlation
between gamma-delta T cells and patient survival. In
our studies, we discerned a positive relationship
between CEP290 and gamma-delta T cells in DLBCL.
Thus, CEP290 could potentially influence DLBCL's prog-
nosis by modulating gamma-delta T cell dynamics.
These findings could enrich our comprehension and
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drive the genesis of innovative DLBCL therapeutic
targets.

The presentation of immune checkpoints on
tumour-infiltrating lymphocytes (TILs) can lead to the
exhaustion of CD4+ and CD8+T cells, undermining
their intrinsic immunocytotoxic capacity and hence,
catalyzing tumour progression [43]. Ma et al. [43] pos-
tulated that LAG-3 could emerge as a novel immuno-
therapeutic target. Concurrent administration with
PD-1 inhibitors might counteract therapeutic resistance
observed in DLBCL patients. Characterized by its
33kDa weight and 288 amino acid content, CD80
(B7-1) is an immunoglobulin protein stemming from
the CD80 gene [44]. Elevated CD80 expression has
been documented across various malignancies [45].
The co-stimulatory ligands, CD80(B7-1) and CD86
(B7-2), which originate from antigen-presenting cells
(APC), can transmit either augmentative signals
through the CD28 receptor or suppressive ones via the
CTLA-4 (CD152) receptor [46]. Epigenetic avenues,
notably promoter methylation, have been identified as
modulators of CD80 and CD86 expression [45]. From Li
et al’s findings [47], CD80 emerged as a recurring tar-
get for the miR-30 family, and BCL6's association with
ibrutinib resistance in activated B cell-like DLBCL was
underscored. In our exploration, we identified pro-
nounced variances in the expression of three immune
checkpoint genes: (CD276, (CD80, and TNFSF4.
Specifically, CD276(B7-H3), hailing from the B7 protein
family, occupies a pivotal position in cancer dynamics.
This immune regulatory protein finds expression selec-
tively in both tumourous and immune cells situated
within the TME [48]. Findings by Wang et al. [49] insin-
uate that cancer stem cells exploit CD276 for immuno-
evasion, hinting at potential CD276 targeting to
diminish CSCs in specific carcinomas. The co-stimulatory
checkpoint protein  TNFSF4(OX40L), expressed in
diverse cell types, has previously been linked to height-
ened antitumour T-cell activity [50]. Research by Jason
Roszik and colleagues [50] correlated diminished
TNFSF4 mRNA expression with unfavourable prognosis
across melanoma stages. Based on our findings, there's
a plausible linkage wherein SNRPB and CEP290 modu-
late CD276, CD80, and TNFSF4 expressions, subse-
quently influencing DLBCL progression. The intricate
underpinnings of this connection warrant deeper
exploration in subsequent investigations.

LncRNAs have established their significance in
tumour progression, encompassing initiation, growth,
invasion, and metastasis, marking them as promising
epigenetic cancer biomarkers and therapeutic candi-
dates [51]. Pivotal roles of microRNAs in physiological
pathways, as well as in disease initiation and

progression, particularly across various cancers, have
been spotlighted in preceding investigations [52,53]. A
specific revelation by Zhao and colleagues [54] high-
lighted Lnc SMAD5-AS1’s capacity to act as a ceRNA,
thereby stifing DLBCL proliferation via the
Wnt/B-catenin route. This mechanism operates by
sponging miR-135b-5p, augmenting APC expression. In
another study, Sun et al. [55] pinpointed
hsa-miR-513a-5p as a microRNA intricately linked with
the onset and evolution of uveal melanoma. Our data
linked SNRPB with hsa-miR-513a-5p, leading us to pos-
tulate a potential pathway wherein hsa-miR-513a-5p
modulates DLBCL progression via SNRPB regulation.
Advanced techniques like scRNA-seq have revolution-
ized our understanding of genetic and transcriptional
dynamics within individual cancerous and immune
cells across diverse cancers. Utilizing scRNA-seq, Ye and
team [56] curated a detailed cellular atlas encompass-
ing both malignant and benign cells in DLBCL. Their
insights provide a novel perspective on B cell lym-
phomagenesis, which could guide targeted immuno-
therapy. Additionally, our analyses discerned
pronounced SNRPB and CEP290 expressions within B
cells, suggesting a conceivable impact of these prog-
nostic markers on B cell-mediated pathways, influenc-
ing DLBCL genesis.

In summary, this study pioneers in discerning the
prognostic potential of SNRPB and CEP290 within
DLBCL. While our findings are promising, this investi-
gation isn't devoid of limitations. Our study was con-
ducted based on a limited number of samples from
public databases, and expanding the clinical sample
size was a pressing issue. Although we have validated
the gene expression by immunohistochemistry, the
validation by a large number of cell or animal experi-
ments is still very important. In addition, the validity
and applicability of drugs obtained from the analysis
need to be verified in the clinical practice. Emphasizing
the imperative for deeper experimental mechanistic
probes and its translational clinical research, we remain
committed to unravelling the mysteries surrounding
these genes.
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